
Digging into the Visitor Pattern

Fabian Büttner, Oliver Radfelder, Arne Lindow, Martin Gogolla

University of Bremen, Computer Science Department
E-mail: {green,radfelde,lindow,gogolla}@tzi.de

Abstract

In this paper we present an alternative to the VISITOR

pattern, DYNAMIC DISPATCHER, that can be applied to
extend existing software in a nonintrusive way, and which
simulates covariant overriding of visit methods. It allows
to express polymorphic operations through visitor classes
in a more natural way than the original VISITOR pattern.
Our solution DYNAMIC DISPATCHER can be applied with-
out touching existing domain classes. Therefore, it is espe-
cially useful to extend frameworks and libraries. We have
implemented DYNAMIC DISPATCHER as a small framework
in Java and conducted performance measurements which
show that the overhead is acceptable in most real world
scenarios.

1. Introduction
In the area of software development, agile method-

ologies like Extreme Programming [3], the Unified Pro-
cess [12], and others have evolved and lots of projects are
done based thereon. These approaches consider analysis,
design, implementation, and testing as parallel activities.
As a consequence, software design artifacts change conti-
nously. This effect is intended to achieve a design which is
constantly adequate to the emerging problem domain.

Design patterns [11] are instruments to obtain a robust,
maintainable, and extensible design. One general intention
of design patterns is to decouple individual concerns, so that
as many parts as possible of a design remain stable accord-
ing to requirements changes.

One of the most controversly discussed patterns is the
VISITOR pattern. The general intention of the pattern is to
allow defining operations separated from the classes they
operate on. Several problematic properties of VISITOR are
mentioned in the literature, for example in [13, 15]. We
will target two problems especially: First, applying the
pattern to existing software is very intrusive. Thus, it of-
ten cannot be used to extend existing software, particularly
frameworks, as discussed in [19]. Second, in mainstream
object-oriented programming languages like Java, C++, C#,

and others that do only support invariant method overrid-
ing [4, 7], VISITOR cannot express specialization. There-
fore, VISITOR is not able to extract inherited operations into
Visitor1 classes.

In this paper we present an alternative to the VISITOR

pattern, DYNAMIC DISPATCHER, that can be applied to ex-
tend existing software in a nonintrusive way, and which
simulates covariant overriding of visit methods. It allows
developers to express polymorphic operations through visi-
tor classes in a more natural way than the original VISITOR

pattern. DYNAMIC DISPATCHER can be applied without
touching existing domain classes. Therefore, it is especially
useful to extend frameworks and libraries.

To demonstrate that it is easily realizable, we have im-
plemented DYNAMIC DISPATCHER as a small framework
in Java with several strategies. Since we achieve the dy-
namic dispatching by executing additonal code, there is the
danger of a substantial performance impact. Thus, we con-
ducted performance measurements which show that the rel-
ative overhead is acceptable in most real world scenarios.

This paper is structured as follows: Section 2 introduces
a simple design example, on which we apply the VISITOR

pattern. In Sect. 3, we discuss the problems of VISITOR

that motivate our variant DYNAMIC DISPATCHER, which
is explained in Sect. 4. In Sect. 5, we present how DY-
NAMIC DISPATCHER can be implemented as a framework in
Java. Section 6 shows the results of the performance mea-
surements we conducted with this framework. Finally, in
Sect. 7, we make a conclusion and present future work.

2. Graphics Example
In the following we will present the design of a simpli-

fied, hypothetical vector graphics software on which we will
discuss some problems of VISITOR. The UML class dia-
gram in Fig. 1 shows the static structure of the example:
a picture can be composed of shapes, which can be lines,
arrows, and other pictures. The reader may notice this re-
flexive relationship as the COMPOSITE design pattern. Two

1We use the following conventions: ‘VISITOR’ refers to the pattern,
‘Visitor’ refers to the class in the pattern, and ‘visitor’ refers to the general
concept.

1

for e : Shape in elements
 e.scale(factor)Arrow

persist(stream)

x1 := x1 * factor
y1 := y1 * factor...

Shape
elements
1..*scale(factor)

persist(stream)

Picture

persist(stream)
scale(factor)

Line

persist(stream)
scale(factor)
x1,y2,x2,y2

Figure 1. Graphics example

error

for e : Shape in p.elements
 scale(e)

Scale
factor
scale(l : Line)
scale(p : Picture)
scale(s : Shape)

l.x1 := l.x1 * factor
l.y1 := l.y1 * factor...

Figure 2. Extracted operation (not working)

operations are defined for shapes: scale and persist. Both
operations are recursive as they descend into the tree of el-
ements formed by the composition. For example, scale is
applied to all elements within a picture, which may be pic-
tures themselves, and so on.

Both shape operations are redefined (overridden) in the
child classes Line and Picture. While class Arrow overrides
persist it does inherit scale. Therefore, the implementation
language is required to late-bind method invocation to cor-
rectly call scale and persist for lines, arrows, and pictures.
Java, C++, C#, and most other static typed OO program-
ming languages support this kind of method binding2.

This is common object-oriented programming style.
However, in certain situations the software developer may
want to separate behaviour from state, i.e., to define (some)
operations outside the domain classes Shape, Line, Arrow,
and Picture. Although this conflicts with common under-
standing of object-oriented programming in a certain sense,
there are at least two recurring motivations in software en-
gineering that justify this violation: One is, to keep domain
classes independent from operations, in order to enable their
reuse and to keep them stable when operations change. The
other motivation is the use of libraries or frameworks. Since
libraries typically cannot be changed, there is no alternative
to defining new operations some other place. In general,
this place is another class.

For example, in our graphics software the scale opera-
tion could be separated from our domain classes into a class
Scale, as depicted in Fig. 2. The class Scale consists of

2We use ‘method’ to refer to an implementation, otherwise we use ‘op-
eration’

Line
x1,y1,x2,y2

accept(v : Visitor)

Arrow

accept(v : Visitor)

accept(v : Visitor)

v.visit(self)

stream
visit(l : Line)
visit(a : Arrow)
visit(p : Picture)

PersistVisitor
factor
visit(l : Line)
visit(a : Arrow)
visit(p : Picture)

ScaleVisitor

visit(l : Line)

Visitor

visit(p : Picture)
visit(a : Arrow)

elements
1..*

Shape

accept(v : Visitor)

Picture

Figure 3. Graphics example - VISITOR applied

three scale methods, one for each occurence of scale in the
domain classes before. One needs an instance of this class
to scale shapes.

Unfortunately, this code does not work in mainstream
object-oriented programming languages. The method
scale(l:Line) is never called from within scale(p:Picture).
Instead, scale(s:Shape) is executed regardless of the run-
time type of the elements in the picture. That is because
these languages do not support double-dispatch of method
invocations. Instead, the method to be invoked is chosen
solely based on the runtime type of the receiver (self). If we
had omitted scale(s:Shape), Scale would not even compile.
scale is only overloaded and the call scale(e) is statically
bound to a method according to the argument’s reference
type. An in-depth comparison of the different late-binding
signatures of Java, C++, C# and others can be found in [4].

A common solution to this problem is the VISITOR pat-
tern. The basic idea is to call an (invariantly) overridden
method accept in the class hierarchy you work on. In turn,
this method calls the correct visit method (as persist is now
named) on the caller. Figure 3 shows the static structure
of our graphics example after applying VISITOR. The ac-
cept method always consists of the same piece of code:
visit(self). Consequently, the early-bound call to the over-
loaded method persist is replaced by a late-bound call to
the overridden method accept. The type of self is always
the type of the class, therefore it is always different and
the correct overloaded method is selected in the caller at
compile-time. Some people append the type name to Visi-
tor methods, i.e. visitline, visitarrow, and so on to make this
fact clearer, but there is no difference at this point between
overloading and renaming. Since nothing special happens
in the accept method, we can reuse it for all operations we
want to move out of the class hierarchy, like scale, persist,
etc. The classes that implement these operations must ad-
here to the contract that they understand a visit call for each
concrete class in the hierarchy. This is achieved through a
common abstract base class (or an interface) Visitor. Conse-
quently, the functionality of scale must be included in both

2

Picture

accept(v : Visitor)
 e.accept(v)

v.visit(self)
for e : Shape in elements

elements
1..*

Shape

accept(v : Visitor)

...

Figure 4. Traversal encoded in the objects

ScaleVisitor::visit(e:Line) and ScaleVisitor::visit(e:Arrow).
We will discuss this issue in Sect. 3.2.

Considering the dependencies between shapes and oper-
ations, we notice that shapes are now decoupled from sub-
classes of Visitor in the way that concrete Visitors (Scale-
Visitor, PersistVisitor) are not known to concrete Shapes at
compile-time. As an effect, we may change or add new
operations on shapes without recompiling Shape, Line, Ar-
row, or Picture. Another side-effect regards attribute and
method visibility: Since the scale methods now reside in
Scale, they must have either access to the attributes in Line
and Picture, or there must be some state-exposing interface
in these classes. It is evident that applying VISITOR may
break encapsulation, since at least the visitors need access
to the object states.

A common variant of the VISITOR pattern is to leave the
traversal through the object structure in the accept meth-
ods (Fig. 4). If all algorithms use the same way to iter-
ate through the objects, redundant traversal code can be
avoided. Perhaps even more important, the kind of com-
position can be left private, weakening the visitor’s depen-
dency. On the other hand, future visitors are restricted to
one kind of traversal. Thus, it seems to us, that this vari-
ant of the VISITOR pattern requires a lot of foreseeing, and
should be applied carefully. Other design patterns may be
used instead to avoid duplicated traversal code in the visi-
tors (e.g. STRATEGY, ITERATOR [11]).

3. Problems Induced by VISITOR

Apart from problems that are intrinsic to the general idea
behind VISITOR, like breaking encapsulation and introduc-
ing a level of indirection, there are several other problems
that are solved in certain approaches. We address three of
those problems with our DYNAMIC DISPATCHER.

3.1. Visitor is Intrusive

It is obvious that applying VISITOR to extend existing
software by either extracting or creating new operations
is a very intrusive procedure. Firstly, the domain classes
must provide an accept method. Furthermore, for inherited
methods explicit delegation code must be created due to the
problem of having no implementation inheritance (see be-
low). Therefore, VISITOR is definitly a heavy-weight pat-

tern, which may not be applied to existing software in sev-
eral cases. This problem is also discussed in [16], which
presents a generic ‘Walkabout’ class to replace accept.

Another undesirable effect of VISITOR is the cyclic de-
pendency relationship between classes and subclasses: su-
perclasses know their subclasses, because Visitor knows all
domain classes through the parameter types of its visit meth-
ods, and each domain class knows Visitor. [14] and [15]
avoid cyclic dependency in ACYCLIC VISITOR and EX-
TRINSIC VISITOR

3.2. No Implementation Inheritance

The VISITOR design pattern does not support implemen-
tation inheritance. In a design without a visitor (operations
are defined in the classes they operate on), subclasses inherit
the methods they do not override. In our example, Arrow in-
herits scale from Line. Nevertheless, ScaleVisitor needs to
implement scale(a:Arrow) - which may call scale(l:Line).
Thus, implementation inheritance must be manually simu-
lated when applying VISITOR in the general case.

Assuming we left out visit(a:Arrow) in the Visitor class,
arrows would be handled as lines in each subclass of Visi-
tor (i.e. in each extracted operation). As soon as one vis-
itor must differentiate between lines and arrows, all visi-
tors must do so. The reason is again the typical OO lan-
guage’s uni-dispatch late-binding: because calls to visit are
early bound with regard to the argument type, visit can
not be specialized in a visitor. If our language supported
covariant method overriding (or multimethods) like Dy-
lan [2] and CLOS [9], this kind of specialization would be
possible. Manually simulating implementation inheritance
can become time-consuming, hard to maintain, and error
prone: If one Visitor needs a special method for a certain
domain class not yet present in the Visitor base class, all
other visitors must be changed as well. Therefore, as dis-
cussed in [19], it is not possible to use VISITOR in frame-
works/libraries, because the framework user cannot change
the interface of the visitor base class, even if she is allowed
to introduce new domain subclasses. In all cases, changes
to the inheritance relationship between domain classes must
be reflected in the manually coded delegation, with the dan-
ger of introducing hardly trackable errors.

One solution to overcome these problems is DEFAULT

VISITOR [15], which introduces a common base class (De-
faultVisitor) for visitors to inherit from. In DefaultVisitor,
each visit method calls the next more general method, up to
the most general argument type. Thus, individual visitors
only need to override some visit methods. Still, DEFAULT

VISITOR is not applicable to frameworks.
Another solution is to move the dispatching to the correct

visit method into its own method (dispatch) in the visitor.
This method checks the runtime type of its argument and
calls the most specific visit method. This way, implementa-

3

domain classes and visitors
overloaded visit method based on
the runtime type of x

T1 T2 Tn

Visitors do not need
to contain visit methods
for all domain classes

dispatch(o : Object)
Dispatcher

create(visitor : Object) : Dispatcher

DispatcherFactory

<<generated>>
DispatcherImpl
dispatch(x : Object)

creates

Visitor

...
visit(x : Tn)

visit(x : T1)

visitor
1

...these methods call the appropriate

Figure 5. Structure of DYNAMIC DISPATCHER

tion inheritance is simulated, and additional Shape classes
are not intrused with accept methods. The major drawback
of this approach is that we must manually maintain several
dispatch methods (e.g. one for Scale and another for Per-
sist). This solution is called EXTRINSIC VISITOR by [15].

4. Dynamic Dispatcher
Reconsidering how we motivated applying VISITOR, we

recall that we tried to separate polymorphic operations
from the domain objects they work on. VISITOR was
motivated by the fact, that Java and most other common
object-oriented programming languages only support uni-
dispatch late-binding. If we had a language which supports
at least double-dispatch method binding, it would not be
neccessary at all. Especially for Java, several approaches
were discussed to introduce double-dispatch method bind-
ing (e.g. [10]). Most approaches we know require a modi-
fied compiler, or a modified virtual machine, they may not
be adoptable for many applications. One exception is the
Java Multi-Method Framework [18], which covers general
multi-methods via reflection, but introduces a significant
performance overhead to normal method invocation.

In the following, we present another solution DYNAMIC

DISPATCHER, which specially targets the cases where VIS-
ITOR may be applied, and which does not require any
changes to the compiler, virtual machine, or runtime. At its
heart, we introduce a Dispatcher object, that dynamically
chooses the most appropriate visit method. Thus, DYNAMIC

DISPATCHER replaces the accept methods of the VISITOR

pattern by an explicit dispatching object. This object is gen-
erated at runtime by passing a visitor object to a factory that
dynamically derives the dispatcher object.

4.1. Structure
The general structure is depicted in Fig. 5. The classes

Dispatcher and DispatcherFactory are part of the dispatch-
ing framework, while Visitors are arbitrary user defined
classes that declare some visit methods. There is no abstract

DispatcherImpl
dispatch(x : Object)

factor
ScaleVisitor

visit(l : Line)
visit(p : Picture)

1 visitor

Dispatcher
dispatch(x : Object) target.visit((Line) x)

 target.visit((Picture) x)

 raise dispatch error
else

if x instance of Line

else if x instance of Picture

Figure 6. Dynamic dispatcher for Scale

base class Visitor, as in the original pattern, which requires
a fixed set of visit methods to be defined.

A DispatcherImpl object is generated by DispatcherFac-
tory::create and holds a reference to its visitor. The dis-
patching, i.e. calling the appropriate visit method, is done
in the overridden dispatch method. Notice, that although
not shown here, a Visitor may need a reference to the Dis-
patcher to (recursivly) invoke its own visit methods, like in
traversal operations. Although not strictly neccessary, the
DispatcherImpl class should be typically generated at run-
time, as explained below.

4.2. Choosing Appropriate Visit
What does choosing the appropriate visit method for an

argument x of dispatch mean? Basically, if there is more
than one visit method with an argument type to which x is
assignable, the one with the most specific argument type
should be called. In general, in programming languages
with subtyping (see [6, 1]), there may be no most specific
type. This is the case if none of the assignable argument
types is a subtype of all others. If there is no most specific
type for x, then there is no most appropriate visit method.
We regard this situation as an ambiguity error.

For Java and C#, we can avoid this ambiguity by restrict-
ing the allowed argument types in the visit methods to class
types. Because Java and C# prohibit multiple inheritance
between classes, this restriction ensures that if there is at
least one compatible visit method for x, there is always a
most specific method. Less restrictive solutions exist (e.g.,
[5],[18]), but they are more complicated. However, if our
intention was to move operations out of a class hierarchy,
we don’t impose any restrictions, because the only place a
method can be defined in Java is a class.

Let us explain a dispatcher generated for a ScaleVisitor
that works on our shape-hierarchy, as depicted in Fig. 6.
The visitor consists of visit methods for Line and Picture.
The dispatch method sequentially checks the parameter
against the types of the visit methods, and calls the appro-
priate one. Notice, that we gained ‘implementation inheri-
tance’. In the previous section, we have defined Arrow as a
subclass of Line, so that the expression x instance of Line
yields true for an instance x of Arrow. Hence, passing
an Arrow object to dispatch results in the execution of

4

Visitor

...

 target.visit((T1) x)
else if x instance of T2
 target.visit((T2) x)

else if x instance of Tn
 target.visit((Tn) x)
else
 raise dispatch error

if x instance of T1

...
visit(x : Tn)

dispatch(x : Object)

DispatcherImpl

Dispatcher

dispatch(x : Object)
1 visitor

visit(x : T1)

Figure 7. Simple dispatch algorithm

Seq=<T3,T2,T6,T4>

T5 T6T3

T2T2

T1

T4
visit(x : T2)
visit(x : T3)
visit(x : T4)
visit(x : T6)

Visitor

Figure 8. Deriving a sequence for dispatch

visit(l:Line). This corresponds with our intention that scal-
ing arrows is inherited from scaling lines.

In contrast, persisting shapes differentiates between ar-
rows and lines, expressed by a separate visit(a:Arrow)
method in PersistVisitor. Therefore, the corresponding dis-
patcher must also check against class Arrow. Actually, this
check must happen before the one against Line, otherwise
visit(l:Line) would be called unintentedly.

In general, the dispatch method can be implemented
as a sequence of if -statements. The inheritance tree be-
tween classes (without multiple inheritance) can be trans-
formed into a sequence T1, . . . , Tn, so that the dispatch
method looks like Fig. 7. For T1, . . . , Tn , (Ti subtype of
Tj) ⇒ i < j must hold to ensure that more specific types
are checked first.

Figure 8 illustrates how to derive such a sequence from
a set of types. The grey-shaded boxes in the class diagram
are the classes occuring as argument types of the visit meth-
ods. The depicted sequence of types is one of the four valid
sequences for the simple dispatch algorithm used in Fig. 7.

One may argue that the implementation as a sequence of
if-statements is against the spirit of object-orientation. Af-
ter all, the removal of conditional statements is one major
advantage of OO. Yet, dispatch enables us to express vis-
itor objects in a far more natural way. We gain simplicity
in many other places by violating the OO paradigma in one
place. Furthermore, as shown later, the dispatcher imple-
mentation can easily be generated on demand at runtime,
removing the drawback of manually coded if-statements.

Other implementation techniques of dispatch are possi-
ble. For deep class hierarchies, it may be more efficient
to reorder the if-statements to perform a tree search along
the class hierarchy to find the appropriate visit method.
More complex, already found method resolutions may be

cached (e.g. in a hashtable), or precomputed (e.g. as in
[17]). Unfortunatly, the presence of dynamic linking and
multi-threading requires synchronization. We experienced
that the simple linear search algorithm is sufficient in many
cases (see Sect. 5).

4.3. Consequences and Requirements

In Sect. 3 we discussed three major problems of the
VISITOR pattern: intrusiveness, cyclic dependendies, and
the lack of implementation inheritance. DYNAMIC DIS-
PATCHER addresses these problems.

Our variant allows to define new functionality over do-
main classes in the same way VISITOR does. In contrast to
VISITOR, it does not require changes to the domain classes.
Thus, it is not intrusive and can be applied to extend ex-
isting frameworks and libraries. As a consequence of the
fact that domain classes do not need an accept method in
our approach, DYNAMIC DISPATCHER does not introduce
cyclic dependencies between domain classes.

Finally, we simulate covariant overriding of visit meth-
ods. Therefore, DYNAMIC DISPATCHER allows to simu-
late implementation inheritance in visitor operations. This
means that developers who add visitor operations to domain
classes can specialize them for individual domain classes
in the same natural way they do when they simply over-
ride methods in the domain class hierarchy. Consequently,
DYNAMIC DISPATCHER based implementations are better
maintainable and more robust against future changes to do-
main classes as well as changes to individual visitors. Also,
it allows developers to express functionality clearer and
more concise than VISITOR, because no dispatching code
clutters the visitor class.

In languages with dynamic linking of types, the dispatch-
ing algorithm cannot be derived at compile time. At least,
we need some kind of runtime type reflection mechanism
to analyze the method signatures of a certain visitor class.
That is, which visit methods are available and which are
more special than others. We also need a way to determine
if an object is an instance of a certain type to find the most
appropriate method.

The actual dispatching of an invocation can be imple-
mented via reflection, if dynamic method invocation is sup-
ported. Alternativly, dispatching code can be generated on
the fly. We present a small framework in Sect. 5, which we
used to evaluate both dispatching variants for Java.

There are two weak points in comparison to VISITOR:
The first is, DYNAMIC DISPATCHER may decrease perfor-
mance due to the additional dispatch code to be performed.
We will discuss some performance measurements we con-
ducted in Sect. 6. The second is, DYNAMIC DISPATCHER

performs type checking at runtime. If no appropriate visit
method is found, some kind of dispatch error must be raised.
Therefore, in DYNAMIC DISPATCHER type errors can occur

5

at runtime, whereas they are detected by the compiler in the
VISITOR pattern.

5. Implementation
For evaluation purposes, we have developed a small

framework that realizes DYNAMIC DISPATCHER in Java. In
the following, we give a brief overview of the implementa-
tion and discuss some performance results.

We have realized three different dispatcher factories.
One can choose each of these to create an instance of Dis-
patcher for a particular object that contains visit methods.

Our first solution (SCDispatcherFactory) is straightfor-
ward: SCDispatcher::create analyzes the given visitor ob-
ject for visit methods. The argument types are extracted,
and ordered as depicted in Fig. 8. Then, source code for
a Java class that implements dispatch as in Fig. 6 is writ-
ten to a temporary text file and compiled at runtime by
the Java Compiler interface. The resulting class is loaded
through a custom class loader and finally an instance of it
is and returned. The second solution (ReflectiveDispatcher-
Factory) reuses a generic class that is initialized with the
type sequence as described above. Whenever dispatch is
called on this object it iterates over this sequence until the
first assignable type is found and invokes the corresponding
method by reflection.

Both solutions suffer from several problems which we
will discuss later on. Our last dispatcher factory (BCDis-
patcherFactory) avoids these problems. It works similar to
the source code generator, but instead of compiling the dis-
patcher class from a temporary text file it directly defines
the class in bytecode. The bytecode is generated using the
free Byte Code Engineering Library (BCEL) [8] which pro-
vides helper classes for writing Java bytecode.

6. Performance Analyis
To estimate the impact of our DYNAMIC DISPATCHER

implementation, we have conducted two performance suites
where we compared the three aforementioned dispatcher
factories with the original visitor, and of course with the
initial, object-oriented form. We will discuss the results at
the end of this section. All tests were executed on a single
user, 1.2 GHz Pentium III machine running Windows XP
and J2SDK, Version 1.4.2.

6.1. Test Suites and Results
The first suite (‘raw’) is meant to estimate the cost of a

single method dispatch. Because our three dispatcher im-
plementations all perform a linear search to find the appro-
priate method, we parameterized this suite with the number
of classes n. For a single run we create n subclasses Ci of
a Base class, each overriding the Base methods f and ac-
cept. For VISITOR and DISPATCHER, we measure the time

3800

610
340

1 10 20 50 100

sourcecode+bytecode

initial

visitor

reflective

79000ms
(reflective)

ms

classes

12450

6050
1030

1 000 000500 0001

470

510

reflective

bytecode

visitor
initial

0

runs

ms
sourcecode

1500

Figure 9. Performance comparison

to invoke visit through accept resp. dispatch with randomly
chosen Ci instances as arguments. For the initial form, we
measure the time of a simple call of f. To eliminate the ef-
fects of test setup, we perform a large number of dispatches
(ten millions) and show the total time. In our simplistic lin-
ear search approach it makes no difference whether the class
hierarchy is flat or deep.

The left-hand side in Fig. 9 shows the results of this suite:
the initial form, which is a simple method invocation of f,
takes a constant amount of time. As estimated, the execu-
tion time of source- and bytecode generated dispatchers is
nearly equal, as they only differ in the way they are gener-
ated. They grow in a linear way with the number of classes
n. For n = 1 they take twice as much time to execute
as the initial form, with n = 100 they take ten times the
amount. The reflective dispatcher is much slower: its ratio
grows from 18 at n = 1 to 230 at n = 100. The visitor
takes always about twice the amount of the initial form, ex-
cept for n = 1, where they are equal. We wondered about
this point and found out, that this break out vanishes, when
Java’s just-in-time compiler is deactivated.

While the first suite measures the raw cost of method
invocations, the second one (‘scale’) measures the overall
effect of using a dispatcher in a complete algorithm. We
have implemented the Scale algorithm in Fig. 1 and 2 in
all forms (initial, visitor, bytecode, sourcecode, and reflec-
tive dispatcher). Then we scaled a simple picture, which
consists of arrows and lines multiple times, and measured
the overall execution time. In contrast to the first suite, we
included the time required to construct the dispatcher and
visitor objects.

The result is shown in the right-hand side of Fig. 9. As
expected, all graphs increase in a linear way. The reflec-
tive dispatcher is by far the slowest while the others per-
form nearly equal. After one million runs, the difference
between bytecode dispatcher and the initial form is less than
ten percent. The sourcecode generated dispatcher increases
by the same degree as the bytecode generated dispatcher,
but takes a quiet large amount of time to construct the dis-
patcher class.

6

6.2. Performance Consequences
Our test suites are not exhaustive, but they give some

hints about how expensive our approach is. Method invo-
cation through the bytecode generated dispatcher is slower
than normal method invocation and invocation through an
accept method. However, the relative overhead decreases
significantly if some (even little) code is executed within
the invoked method. To provide a number, the overhead in
our graphics example is about ten percent. We expect that
this overhead is negligible in most real world scenarios.

If only few calls are to be performed, the reflective dis-
patcher may also be sufficient. Its advantage is that it can
be implemented as a single generic reusable class.

7. Conclusion and Future Work
We presented a variant of the VISITOR pattern that is

more suitable for framework designs and more natural for
software developers in certain situations. It can be applied
to extend software without affecting existing code. We un-
derstand it as another tool that is especially useful in agile
software development.

We demonstrated how DYNAMIC DISPATCHER can be
implemented as a small framework in Java. We could have
done this in C# and the .NET framework as well, since .NET
also provides the required reflection capabilities. For C++,
at least the sketched generated sourcecode dispatcher can be
implemented. Our evaluation showed that the performance
tradeoff implied by the implementation should be accept-
able in most real world situations.

One of the drawbacks of DYNAMIC DISPATCHER is that
type errors can occur at runtime. We are currently working
on an extension to achieve more static type checking. Ba-
sically, we are going to allow to specify a user defined base
type for the dispatcher object.

Apart from these technical aspects we are going to fur-
ther evaluate the applicability of DYNAMIC DISPATCHER

for a larger project in which the aforementioned problems
of VISITOR arise. We are going to realize the project with
both variants. We expect that the DYNAMIC DISPATCHER

solution will take less time to be completed and results in a
simpler overall design.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects.
Springer, New York, 1996.

[2] Apple Computer, Eastern Research and Technology.
Dylan: an object-oriented dynamic language, 1992.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] A. Beugnard. OO languages late-binding signa-
ture. Ninth International Workshop on Foundations
of Object-Oriented Languages, 2002.

[5] J. Boyland and G. Castagna. Parasitic methods: Im-
plementation of multi-methods for Java. In Confer-
ence Proceedings of OOPSLA ’97, Atlanta, volume
32(10) of ACM SIGPLAN Notices, pages 66–76, New
York, NY, 1997. ACM.

[6] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. ACM Computing
Surveys, 17(4):471–522, 1985.

[7] G. Castagna. Covariance and contravariance: Conflict
without a cause. ACM Transactions on Programming
Languages and Systems, 17(3):431–447, 1995.

[8] M. Dahm. Byte code engineering with the BCEL API.
In C. H. Cap, editor, Java Informationstage ’99, Infor-
matik aktuell, pages 267–277, 1999.

[9] L. G. DeMichiel and R. P. Gabriel. The Common Lisp
Object System: An overview. In J. Bezivin et al., ed-
itors, ECOOP ’87, European Conference on Object-
Oriented Programming, Paris, France, pages 151–
170. Springer, New York, NY, 1987. LNCS, Volume
276.

[10] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and
W. Holst. Multi-Dispatch in the java virtual machine:
Design and implementation. In Proceedings of the 6th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS-01), pages 77–92, 2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Elements of Reusable Object- Oriented
Software. Addison-Wesley, 1997.

[12] C. Larman. Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and
the Unified Process. Prentice Hall, 2001.

[13] R. C. Martin. Acyclic visitor. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Lan-
guages of Program Design 3, pages 93–104. Addison-
Wesley Publishing Co., Reading, MA, 1998.

[14] R. C. Martin. Agile Software Development. Principles,
Patterns, and Practices. Pearson Education, 2002.

[15] M. E. Nordberg. Default and extrinsic visitor. In R. C.
Martin, D. Riehle, and F. Buschmann, editors, Pat-
tern Languages of Program Design 3, pages 105–123.
Addison-Wesley Publishing Co., Reading, MA, 1998.

[16] J. Palsberg and C. B. Jay. The essence of the visi-
tor pattern. In Proc. 22nd IEEE Int. Computer Soft-
ware and Applications Conf., COMPSAC, pages 9–15,
1998.

[17] C. Pang, W. Holst, Y. Leontiev, and D. Szafron. Multi-
method dispatch using multiple row displacement.
LNCS, 1628:304–329, 1999.

[18] Remi, F. Etienne, and D. Gilles. Java multi-
method framework. International Conference on
Technology of Object-Oriented Languages and Sys-
tems (TOOLS’00), 2000.

[19] J. Vlissides. Visitor in frameworks. C++ Report,
11(10):40–46, 1999.

7

